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The second-order generally invariant Lagrangians for the metric fields are
studied within the framework of the Ehresmann theory of jets. Such a
Lagrangian is a function on an appropriate fiber bundle whose structure
group is the group L,® of invertible 3-jets with source and target at the
origin 0 of the real, n-dimensional Euclidean space R*, and whose type fiber
is the manifold T,2(R™* O R™*) of 2-jets with source at 0 € R* and target
in the symmetric tensor product R™ © R™*, Explicit formulas for the
action of L,® on T,2(R"* O R™) are considered, and a complete system of
differential identities for the generally invariant Lagrangians is obtained.

1. INTRODUCTION

As the geometric structure of the generally invariant variational problems
in fiber bundles is satisfactorily understood (Krupka and Trautman, 1974),
further interest in these variational problems is shifted to the existential and
computational aspects of the theory. A natural question is posed as to what
are all possible generally invariant Lagrangians for a tensor bundle of a
given type.

The general theory tells us that each generally invariant Lagrangian is
defined on the type fiber of a fiber bundle, and is invariant under a Lie trans-
formation group acting on this type fiber. Let Z,, . = 1,2,..., k, be any
fundamental vector fields generating this Lie transformation group. Then if
a function L on the type fiber defines a generally invariant Lagrangian, it
must satisfy the system

E(L) =0 (1.1)
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of linear, homogeneous, first-order partial differential equations. This sug-
gests that we should look for the generally invariant functions among the
solutions of the system (1.1).

Recently, a method for determining the Lie transformation groups in a
very general case of the r-jet prolongation of fiber bundles, associated with the
bundle of frames, has been proposed (Krupka, 1974). This method is based
on the theory of jet prolongations of principal fiber bundles (Kolaf, 1971a,
1971b).

In this paper we study the second-order generally invariant Lagrangians
for the bundle of metrics. It is the merit of the relativity theory that the
Lagrangians of this kind have been studied in literature to a great extent. This
provides us a possibility to complete the well-known results by a deeper,
rigorous geometric insight as well as to illustrate how the general method
works in a concrete, not so simple situation.

More precisely, let X be an n-dimensional, real differential manifold and
E the bundle of second-order, symmetric covariant tensors on X. Denote by
R" the real, n-dimensional, Euclidean vector space, R"* its dual vector space.
Obviously, £ has the symmetric tensor product R** O R™* for its type fiber.
The second-jet prolongation #2E of E, the domain of relativistic Lagrangians
for the metric fields on X, has the type fiber T,2(R™ (O R"¥), the manifold
of 2-jets of maps from R™ to R** O R™* with source at 0 € R™. Let L,® be the
group of invertible 3-jets with source and target at 0 € R*. Our main result
consists in the formulation of the system (1.1) of the identities relative to the
natural action of L2 on T,2(R™* O R™¥). Further results on the theory of the
second-order generally invariant Lagrangians for the metric fields may be
found in the second part of this work (Krupka, 1976).

Throughout, the standard notation of the differential calculus, manifolds,
and the theory of jets is used (see, e.g., Dieudonné, 1969, 1972; Ehresmann,
1953). To perform numerous differentiations precisely, we use both symbols
D, and 9/ox; for the partial-derivative operators. The Einstein summation
convention is used.

2. PRELIMINARIES

In this section we briefly recall some facts concerning the Lie trans-
formation groups (Dieudonné, 1972), vector-field systems (Hermann, 1968),
and the theory of generally invariant Lagrangians in tensor bundles (Krupka,
1974).

Let G be a Lie group acting on a manifold X by themap Gx X' 5 (g, x) >
gx € X. Each x € X gives rise to the map

Gog—>3(g) =gxeX @.1)
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By means of this map one can construct 2 homomorphism / from the Lie
algebra I; of G onto a Lie algebra /(X) of some vector fields on X. This is
defined as follows. For x € X and ¢ € I; we put

I()(x) = T %€ 2.2

where e is the identity element of G, J; is identified with 7,G, and T,% denotes
the tangent map of % at e. In this way the Lie algebra /(X) can be completely
described by the image of any basis of /.

Recall that a real function L, defined on an open, G-invariant subset I/
of X, is said to be G-invariant if

L(gx) = L(x) 2.3)

forallxe Uandallge G. Denote by E,,« = 1,2, ..., k, any subset of [o(X)
generating the whole Lie algebra /;(X). Obviously, if L is G-invariant then
(1.1) holds for all .. This means that all G-invariant functions can be found
among the solutions of this system of equations.

The above considerations can be applied to the natural action of the
group L2 on the manifold T,2(R™* O R**) (Krupka, 1974). Let (a, g) —> ag
denote the natural action of L,* (= GL,(R)) on R™ (O R**. Within the con-
text of the theory of jet bundles, choose a point @ = j%f € T,2(R™* O R™).
Then the map (2.1) is of the form

Ly 3 jo%e~ 0(jo%) = jo*(Deca™")fe ) e TAR™ O R™)  (2.4)

or, more precisely, 0(j,%¢) = j,2(&fa"1), where & = Deaoc:™* maps a neighbor-
hood of 0 € R™ to L,Y, a(x) = j'(teaf - ,-1(x), and t, denotes the translation
of R™ sending the point x € R* to the origin 0 € R*. The homomorphism
I: I3 — I (T,2(R™ O R™)) of Lie algebras is then constructed by (2.2).

3. IDENTITIES FOR THE SECOND-ORDER GENERALLY
INVARIANT LAGRANGIANS

In this section we establish the equations (1.1) for the action (2.4) of
L2 on T,2(R™* O R™).

In order to discuss the structure of the map (2.4) in detail, we need some
coordinates on the considered spaces.

Let us consider the group L,*. On L,* there exist giobal coordinates
a®, 1 € i, p < n, defined by

a(jo'®) = Dija;'(0)

Here, «, ' denotes the pth component of the map «~!. We shall write for



362 : Krupka

short jy'a = (a/”). Similarly, on L,2 there exist global coordinates a?, af}, af;,,
1<p<nl<i<j<kc<n, defined by

a?(jo’e) = Dy, 1 (0)
al(jo’«) = DDy, (0) (3.1
afp(joe«) = DyD;Dye; *(0)

We shall write j,%« = (a?, af;, aly).

Next, let us consider the space R™* (O R™. Let ¢; be the natural basis of
the vector space R", ¢' the dual basis of R"*. Each element g € R™* O R™ is
uniquely written in the form

g=g8,Q¢
where g;; = g;. We take the numbers g, 1 < i € j < n, for the coordinates
on R™ O R™ and write g;; = g;,(g) or just g = (g;;). Similarly, let
0 e T,2(R™ © R™), and choose a map f of a neighborhood of 0 € R* into
R™ O R™ such that Q = j,2f. Then to each point x from a neighborhood
of 0 € R™ we are given an element of R™* () R"*,

fx) = gi(f(x)e' @ &
A system of coordinates on T, 2(R™* O R™¥) is defined by
8(Q) = &(f(0)
8i1,{(Q) = Di(g,/)0) (3.2)
8i7,:(@) = DiDy(8,/)0)
where 1 <i<j<n1<k<!<n Wewrite jo*f = (8 8> 815,10)-
The standard left action of L,* on R™ (O R™* is introduced as follows.
Ifge R™ O R™, g = (gy), and jo'a € L,%, jo'a = (a/7), then
Joteg = (aa/gy)
or more precisely, in our coordinates,
8ol Jo'og) = a(jo')a/(jo'e) 81(g) 3.3

After having introduced the coordinates and the group action (3.3) of
L' on R™* (O R™* we are able to write the action (2.4) of L,® on T,,2(R™* (O R™*)
in terms of our coordinates. According to the general rules for computation
with jets we construct a local map @ belonging to the 2-jet j,2(&fe~1), where
Jola € L2, jo*f € T,2(R™ (O R™). Putting

B(x) = Jo'(txot - a=10) [~ (X))
we obtain, according to (3.2),
gpq(q)(x)) = Dp(tx“t —am )i 1(O)Dq(t.aco‘t -~ l(x))j_ l(o)gij(f“ - 1(x))
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Since for a suitable ye R", ¥y = (J1, Yo» - - +» Va)s
(Lot o 1)i H(¥) = —a7 H(X) + o7 Hx + )
then, differentiating with respect to y,,
Dp(txat—a'l(x))l_l(o) = Dpai'l(())
and
8o $(X)) = Do H(x)Dyer H(x)gi fo ™ (x)) (34
The desired coordinate expression for the map (2.4) now follows from (3.2)
and (3.4). Writing j,2® = j,3«j,2f and
g;q = Zp(Jo* D) 8rasr = gpq,r(jozq)) gx’:q,rs = Zpa,rs(Jo" D)
we obtain after necessary differentiations that the following assertion holds.
Proposition. 1In terms of the coordinates (3.1) and (3.2), the natural
action of L,® on T,2(R™* O R ™) is given by
8pq = apiaqjgif
8rar = apiaqjarkgii,k + (a4 + a'al))g
gz,rq,rs = apiaqjarkaslgij,kl (3.5)
+ (apiaqja,rcs + a;saqjark + apiagqark + af’paqjask + apiaiqask)gij,k
+ (airpaqj + a‘f‘pagq + aépaiq + aﬂiagrq)gii
A point jo’)f € T,2(R™ O R™), jo’f = (&> &is.i» i7.a)> Will be called
regular if
det (g{;) #0 (3.6)
Denote by 8, the Kronecker symbol and by g*/ the functions of the coordinates
g8, introduced on a neighborhood of a regular point j?f € T,2(R™* © R**) by
g% g = &'
To investigate the map (2.4) further, we shall simplify the formulas (3.5) by

using a new system of local coordinates on this neighborhood. The following
assertion can be proved by a direct calculation.

Proposition. The formulas

&is = &is
Ty = 38 + Gy — &ineyi)
Rij = Hgu, i + et — it — L) 3.7

+ 28" ((8msx + Gmics — &iesm)&ot1 + &ot,i — Gitw)
- (gmi,l + &m,i — gjl,m)(gpi,k + Gt — gik,p))
St = & + 8ui + 8uets) — S & + G + Grat, 1)
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define a coordinate transformation on a neighborhood of a regular
point j,2f e T,2(R** O R™), The inverse transformation is given by

81 = 8y
Gise = Lo + Dy
i = Sipa + Spma — HRuen + Ryen)
+ 387l g s + To Lo — 2,1 )
Notice that the coordinates R;;,; on T,2(R™* O R™*) satisfy the algebraic
identities
Ripa = —Rpa = —Rije = Ry Ripa + Rupe + Ruay =0 (3.8)

Owing to these identities, there are i&n%(n? — 1) independent coordinates
Ry, (Eisenhart, 1964, p. 21).

Let us express the map (2.4) in terms of the coordinates g, Iy s, Rijuss
Si g (3.7).

Proposition. On a neighborhood of any regular point
Jo’f e TA(R™ O R™) Jo’f = (81> &> Gig.)
the map (2.4) is expressed by
gzliq = a,'a/gy
1-‘;J.qr = aptaqjarkri,jk + apia:{qgij
R;qrs = apiaqjarkaisHkt
Sp.ars = aplajaalS; j (3.9)
+ [al(aldl, + afak, + ald) + af(ata)f + dak + aiaX)
+ Ydalak + aalaf + daaiak)]
X Pl,jk + api[atjns + %’(ati'pagq + agpa;q + a;qa{:s)]gﬁ

We are now in a position to express the Lie algebra homomorphism (2.2)
in terms of our coordinates. Denote by id the identity map of R", and by e the
identity element of the group L,®:

e = jodid = (8},0,0) (3.10)

Let £eT,L,® be any element of the Lie algebra /3. By definition of the
tangent map,

Tegf = (Q(e): DQ~(€)§) = (Q’ DQ~(e)§)
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Let e}, €}/, ¢i/* be the basis of T,L,® relative to the coordinates a?, af}, afy,.
Then

§ = &Pe) + el + et

where the components £, €5, are symmetric in the subscripts. Then by (3.9),

Tegf Dgque)f + DF; qr(e)f 3I‘
p.ar

+ DRyyr(€) 75— + DS; 0rs€) s

a‘RPqTS aSP qars

where jo2f € T,2(R™* O R™) is fixed, and the partial derivatives on the right
denote the tangent vectors to T,2(R™* O R™) at j,°f associated with the
coordinates (3.2). Putting

T, Q¢ = ¢/B) + &5 + £,8M
we easily obtain

ag;q a ar‘;.qr a + aRll’qrs a + 8S1”,11T8 a

I PR,
da} 0gy, oa} Ty 4 0a;} ORpys oa; Sy g,

g =

[1]

My © 08y s O
oay, o, , Oy 08y, s

K

[zl
-,
I

OSp.ars O
3a§kl a‘Sp.qrs

[1]

flel
1

where the partial derivatives are considered at the point e. A direct com-
putation gives

= =3,
We set
BhIk = gimEiH = S
Further,
oy 8 9
6aﬂc 81‘, ar 8 1 A
and we set

!
Hilgk gim (E{"k Sp s o, qrs) — o
oaf, ol 4
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Similarly,
dghy O 8 OR,ys @ 8
Bra % _ 9, ¢ Zlars = 9
oa) 0gy, Bim 08 m oa} ORyrs Rivar OR;pgr
and we set,
- - ory . A ] ]
= (‘H‘”‘j ~Far =T T “p'm) = og; T 28" Row 3R

It is clear that each of the systems £/, Z{%, Ei* and B, Eb7% B of funda-
mental vector fields span the Lie algebra lLﬂa(Tnz(R"* © R™)) around any
regular point.

It is convenient to express our vector fields in the coordinates g¥ instead
of g,;. Putting

o~ 7]
5 = —g, g B =
=i, = gikgﬂ ag 2g‘lpRJ'qu aqurs

and
EJ = %(gi,j + é_'1,1) i—'u = ‘%‘(-—-; i i )
we have proved the following result.

Theorem. Around any regular point of the manifold 7,2(R** O R"*),
the Lie algebra I, o(T,2(R™* O R™)) is spanned by the vector fields

Ei,]kl’ Ei.!k :1}-, ‘—'1_1.

In general, the vector fields E%/%, Ei* BEX and E;; do not have to be
linearly independent. Consequently, the dlmension of the Lie algebra
I, (T2(R™ O R™)) on the considered open sets is less than or equal to

werre (5)+ (737)

Recall that an L,-invariant function defined on an open L,%-invariant
subset of T,,>(R™* O R™*) is called generally invariant. Our foregoing discus-
sion may be summarized as follows.

Theorem. Each generally invariant function L, defined on an open
L 2-invariant subset of regular points of the manifold 7,2(R™* © R™),
satisfies the system

EWR(L) =0  BHI) =0 sL)=0 Ez)=0 (3.1D

of partial differential equations. In particular, each generally invariant
function depends only on g¥ (or g;;) and Ryy,.

{1]

The relations (3.11) may be called a complete system of differential
identities for the considered class of generally invariant Lagrangians.
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All our considerations can be repeated in the coordinates g;;, gi;.x» 81,10
(3.2). Using (3.7) instead of (3.9) we obtain the following result.

Proposition. Around any regular point of the manifold T,2(R™* O R™),
the Lie algebra /I s(T,2(R™* © R™)) is spanned by the vector fields

0
01 = 2gim a + (gpq is + 2giq ,3 )

17117

7

.Pq r8

+ Z(gpq 1{8 + glq 78 pj) 3

OF = (88, + 8,73

3

qu

+ [850sd/ + 280,58 + 5781 7~

17(1 s

0{!:1 %g‘q(a .7'8 ka i + S .1‘8 ks i + 8 18 LY l)

6

pq,rs

Theorem. Each L, 3-invariant function L, defined on an open L,*-
invariant subset of regular points of the manifold 7,2(R"* O R™),
satisfies the conditions

0XL) =0 6ML)=0 6Ly =0 (3.12)

4. REMARKS

Let us characterize the Lagrangians L as depending only on g;; and
g1, DOt on gy, ... For these Lagrangians, equations (3.12) are equivalent
with the system

bLy=0 GL)=0

where

7}
9' = 2gim 3g + (gpq. 8 + 2giq r8 )3

qu

B = gi(3/8,% + 5,/5)

a Pq T
It is easily seen that around any regular point (g, 8is.x)

0
08x1,1

= gm0 + gm™05 — g™O)
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It is now evident that each generally invariant Lagrangian L satisfies
oL 0 oL
g, Ognq

This is a proof of the well-known fact that there are no nontrivial generally
invariant Lagrangians that depend on the components of a metric field and
their first derivatives only.

Our second remark is intended to illustrate the notion of the flat local
coordinate system (Hermann, 1968), and the geometrical meaning of the
““generally invariant functions” as some coordinates belonging to a flat local
coordinate system.

Let us consider the vector-field system B&Ef, Ej, B4, Eb* op
T2(R?* O R?*). In this case, there is only one independent variable among
the functions Ry, say Rysq0. It is immediately seen that B = 0, 1,7 =1, 2.
Put § = det (g¥) and introduce a coordinate transformation from g'i, g%
g22’ R1212 to glls g12’ g22, R by

g’ =g" R = g%g" Ry = 28Ry010

0

One immediately obtains

- 2 7] i) 0
'='i}- = 551; + 2gqu1n'q! ﬁ - (gipqurs + gijiqrs)gprgqs 3_R = Eé';

Summarizing the discussion of the case » = 2 we see that around each
regular point the Lie algebra [, s(T,*(R** © R®*)) is spanned by the vector
fields 8/8S; ju, 8/0T ., ©/0g”. The coordinates S; ju, 'y, &7, R establish a
flat local coordinate system for the vector-field system Ej, B, E¥-k, Ebik,
In particular, there is only one independent generally invariant function R.
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